点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:彩神app必赚方案-用户注册 | 官网首页登录平台网址
首页>文化频道>要闻>正文

彩神app必赚方案-用户注册 | 官网首页登录平台网址

来源:彩神app注册2024-08-01 17:48

  

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

彩神app必赚方案

推动中国同中亚国家关系高水平发展(和音)******

  中国同中亚五国实现“三个全覆盖”——全面战略伙伴关系全覆盖、双边层面践行人类命运共同体全覆盖、签署共建“一带一路”合作文件全覆盖,将为携手构建更加紧密的中国—中亚命运共同体注入重要动力

  日前,习近平主席在人民大会堂同来华进行国事访问的土库曼斯坦总统谢尔达尔·别尔德穆哈梅多夫举行会谈。两国元首宣布将中土关系提升为全面战略伙伴关系,就推动构建中土命运共同体达成重要共识,并共同见证签署“一带一路”等领域合作文件。这标志着中国同中亚五国实现了“三个全覆盖”,即全面战略伙伴关系全覆盖、双边层面践行人类命运共同体全覆盖、签署共建“一带一路”合作文件全覆盖。

  中土两国理念相通,目标相似,利益相连。在两国元首的战略引领下,中土各领域多层次交流合作取得丰硕成果,友好关系日益巩固。中土建立全面战略伙伴关系,持续深化全方位合作,推动构建中土命运共同体,将使两国关系在更高水平上向前发展。中土构建命运共同体是在彼此尊重、坦诚互信、互利共赢的基础上,更好地深化互利合作、照顾彼此关切、巩固世代友好。双方要在彼此核心利益问题上相互支持,尊重各自走符合本国国情的发展道路;加快发展战略对接,充分发挥中土合作委员会等机制作用,不断拓展合作的广度和深度,用实实在在的合作成果为两国关系提供支撑;深化执法安全、生物安全合作,共同打击“三股势力”,筑牢维护两国发展的安全屏障;加强各领域各层级交流,开展人文合作,深化人民感情,筑牢两国关系持续健康发展的民意和社会基础。这些有利于两国实现发展振兴,为两国人民创造更多福祉。

  中土关系进一步提升,体现了中国同中亚国家关系的高水平发展。31年前,中国率先同中亚国家建交,开启了双方交往和合作的大门。31年来,双方走出了一条睦邻友好、合作共赢的新路,成为构建新型国际关系的典范。习近平主席去年1月在中国同中亚五国建交30周年视频峰会上指出:“无论国际风云如何变幻,无论未来中国发展到什么程度,中国都始终是中亚国家值得信任和倚重的好邻居、好伙伴、好朋友、好兄弟。”中国同中亚五国分别建立全面战略伙伴关系,在双边层面践行人类命运共同体,有助于维护地区和平稳定与发展繁荣。作为中国同中亚国家开展合作的新机制,“中国+中亚五国”合作机制公开透明、互利共赢、平等互惠、务实管用,为深化中国同中亚国家全方位合作提供了重要平台。办好首届“中国+中亚五国”峰会,将充分发挥元首外交引领作用,推动中国同中亚国家关系实现新发展,助力双方更好应对共同挑战。

  中亚地区是“一带一路”的首倡之地。中国同中亚国家秉持共商共建共享原则,推动“一带一路”倡议在中亚地区开花结果,为地区人民带来了实实在在的福祉。中国—中亚天然气管道是世界上最长的天然气管道,截至2022年6月累计对华输气超4000亿立方米;乌兹别克斯坦“安格连—帕普”铁路隧道贯通,彻底改变了上千万人的出行方式;中哈霍尔果斯国际边境合作中心与中哈连云港物流合作基地成功建成,打开了中亚国家通向太平洋的大门;中吉乌公路正式通车,成为跨越高山、畅通无阻的国际运输大动脉……在“一带一路”倡议与中亚国家发展战略对接框架内,中国同中亚国家合作取得一系列历史性、标志性、突破性成就。双方继续高质量共建“一带一路”,加快发展战略对接,将更好促进本地区经济发展、人民福祉、睦邻互信。

  亲望亲好,邻望邻好。中国坚持亲诚惠容和与邻为善、以邻为伴周边外交方针,深化同周边国家友好互信和利益融合。中国与中亚国家赓续友谊、推进合作,携手构建更加紧密的中国—中亚命运共同体,必将为推动构建人类命运共同体作出更大贡献。

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 大货车失控撞毁BRT站台 工作人员惊险逃生

  • 妻子:买超否认因吃醋而求婚

独家策划

推荐阅读
彩神app官方网站粉丝演唱会上求婚 王力宏焦急围观:不要挡到我
2024-05-18
彩神app规则刚买一年,价格掉一半!新能源车,为啥转手就尴尬
2024-03-03
彩神app返点我国规划新一代长征火箭型谱 重型火箭于2030年首飞
2024-07-16
彩神app官网网址 全新宝马3系 竞争力提升明显
2024-01-10
彩神app娱乐英超-德赫亚送礼曼联平切尔西
2024-06-21
彩神app玩法 狐友国民校草张恩豪:上天不负努力的人
2024-05-10
彩神app网址锁定下赛季美巡全卡 张新军喜赢韦巡赛首冠
2024-08-18
彩神app官方北京冬奥闭环人员心理健康如何保障?
2024-07-03
彩神app客户端下载杜兰特35分勇士险胜1-0 哈登35分保罗遭驱逐
2024-04-11
彩神app客户端这部悬疑双女主剧还是这么姬烈
2024-07-23
彩神app下载app世园会开幕式晚会彰显中国风范
2024-03-06
彩神app技巧虎牙前瞻:首次实现5G+4K户外直播,虎牙带来直播新体验
2024-04-09
彩神app漏洞 法甲-内马尔挥拳怒打球迷狂喷队友 巴黎邀战术大师掌舵
2024-05-15
彩神app注册网《北京中轴线保护管理规划(2022年-2035年)》公布实施
2024-08-06
彩神app计划群联合工作专班:胡某宇系自缢死亡
2024-09-26
彩神app下载猫咪唇膏用成海豹唇膏
2024-04-03
彩神app登录[萌宝大赛]梓梓:一起来玩泡泡呀
2024-03-22
彩神app计划印度唯一航母出事故起火 局座又预言对了
2024-09-06
彩神app饮食应少糖多酸,保护血管效果明显
2024-08-05
彩神app 中国航母杀手亮相 数千公里外可精确猎杀航母
2024-03-18
彩神app平台俄官员:IS等组织组建黑客部队 世界面临威胁
2024-08-26
彩神app邀请码面临志愿填报需了解什么?
2024-03-07
彩神app手机版APP 涨70%!通胀来袭,降准触底!房价该何去何从?
2024-06-13
彩神app投注58岁余杭阿姨坐拥8套房,白天阿里当...
2024-01-14
加载更多
彩神app地图